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ABSTRACT . .

We consider the mathematical behavior of a viscous, incompressible fluid

bounded above by an atmosphere of constant pressure and below by a horizontal

bottom. After reviewing the existence and regularity theory for the equations

governing the motion, we establish rates of decay for solutions near
1,-.. %

equilibrium. The function describing the height of the free surface decays

like t-1/2; the velocity field decays like t - 1. These estimates are shown

first for the linearization about equilibrium and then for the full nonlinear

problem. Complete details will be given elsewhere.
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SIGNIFICANCE AND EXPLANATION

One primary purpose of mathematical analysis is to describe the behavior

of solutions of equations representing physical phenomena. The results shed

light on the validity of the mathematical model as a representation of the

physical process and may in turn offer new information about the phenomena.

For the problem considered here, the motion near equilibrium of a viscous

fluid bounded by a free surface, fundamental properties of existence and

regularity were established by the first author in earlier work. This paper

continues the study by describing further the behavior of solutions over a

horizontal bottom. Solutions decay at a fixed rate because of the effect of

viscosity in the interior of the fluid. The slow rate of decay is determined

by the behavior of long wavelengths in the linearization about equilibrium.
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LARGE-TIME BEHAVIOR OF VISCOUS SURFACE WAVES

J. Thomas Beale* and Takaaki Nishida**

al. Introduction.

We are concerned with solutions global in time to a free ,

surface problem of a viscous Incompressible fluid, which is

formulated as follows: The motion of the fluid 1. governed by

the Navier-Stokes equations

Ut+ (u-y)u PA&'U + VP- 0

where a(t) -(x a R2  -b <y < q(t,x)) in the domain occupied ..

by the fluid. The free surface S: y -q(t~x) satisfies the

kinematic boundary condition

(1.2) qit + Uq + 27 U3 - on S1..

The stress tensor satisfies the free boundary condition:
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(1.3) pnl - (u 1 ,x + u ,'x )n "

(g9 - PV((1 + ITq1 2)- 1 1 2Vq)]n o Sir

where n is the outward normal to. S., g is the acceleration

of gravity and p is the nondimensionalized coefficient of sur-

face tension. On the bottom SB: y - -b we have the fixed

boundary condition

(1.4) u - 0 on S".

He assume here that b Is constant, although Theorem 1.1 below

holds for b - b(x).

We consider the initial value problem (1.1)-(1.4) with the

data at t 0

q-=q 0 lx) XE•R 2 ,"'::2
(1.5) }u U(XY) In O , -

where B 0  1 2(0). Local existence theorems for (1.1}-(1.5) are

proved for both cases with or without considering surface tension

([1],[2]). The problem of existence global in time for (1.1)-

(1.5) neglecting the surface tension (p - 0) has a difficulty "

which was pointed out in [1]. However If the surface tension is

taken Into account, the following global existence and regularity

theorem is proved.

-2- :.
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!beores 1. 1 (21)

Let 3 < r < 7/2. ASSUae the compatibility conditions on .

the Initiael date:

Y * U 0 M 0 in Roo -

(1.6) {(Co)ix + (u 0 )j~ )nl e 0 onl Y - iq0(X),

U 0O On y -q
0
(X)- ...

0i

There exists 8 > 0 such that If the Initial data satisfy

(1.7) a001 Nr (R2) + 1UO r-1/2, < 6
NCR H ( 0 )

then there *mists a unique global solution 17,u,p of (1.1)-

(1.5), which satisfies 4

(18) q 4 X' 1 (RxR) u -a K1 (R~xgk(t)), vp (R x1(R xa(t)).

Further, given any T > 0 and any k > 0, there exists 8 > 0

such that if

(1.9) 10 <a

than the solution become* smooth for t > Tie i*e.,

(1.10) 17 . rkl/((T ,4*)xR ), U 4 ~((T,v")XR(t)). 1:
Kr 2 (T 1 Q x XXa~t)).

-3-
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In particular the solution with kc k 2 is classical. Here

H r C)is the usual Sobolev space with norm I on the domain -.

X((T 15T x M is composed of the restriction to theK

fluid domain 2(t) of the functions belonging to

r. 3(1.11) K ((T1,,T )xR)-

0 r3 Hr/2 03H((CTVT );H CR n) H (T11T ).H CR).

C R x R )is defined as follows: 7 41 X ((0,T) x R) for

any T>O0 and q - q1  such that q a r (R+ x R2) and

Q Is the Fourier transform in space-time of L function of

bounded support. See [2] for the details of the function spaces.

In this summary we give an asymptotic decay rate for the

solution of the above theorem.

Theorem 1.2. Ii q7 a L. (R2) than Mhers *xists 82 > 0 such

that If

(1.12) 210Z0 +"1701L 1 <

than the solution has the decay rat*:

I0aq(t), < CE (1 + t) -C1+a)/2 # 0,1,2

Iu~t)12 ' ITP~tfl0 < Cal"1 + t)-

-4-



in 42 we transform the free boundary problem (1.1)-(1.5) to an

equivalent one on a fixed domain and reduce the components of the

stress tensor to zero. The linear decay estimate is discussed in

13 and the nonlinear one in 44.

12. Reduction of the Problem.

We recall some of the main ideas for the reduction of the

free surface problem in (2]. First we use the transformation of

the free boundary problem (1.1)-(1.5) to that on the fixed

(equilibrium) domain: 0 (x4 R2 -b < y < 0). Given q(t,x)

we extend it for y < 0 as follows:

where a7(t,t) is the Fourier transform with respect to x and

F is the Inverse. If 9(t,-) belongs to H(S F), then

q(t,.,.) belongs to ~ 1 () where S now denotes the upperF

surface y - 0 of 0. For each t > 0 we define the transfor-

2nation * on a onto a(t) (x aR -b <y <q(t,x)) by

(2.2) *(Xx 2 yt (x1 Ix2, + y(1 + q/b)).

The vector field u on Q~t) # (aR) is defined from the vector

field v on Aby



(2.3) u 9 vJ G V

where J is the Jacobian determinant of dO (0 (j

-1 + q/b + 9 (1 + y/b). This map preserves the property of

being divergence free, that is, v - v -0 in a itt v u U 0

in O(t).

Using the transformation (2.2), (2.3) and

U (a v) where 9 (do)- and so on, we can

rewrite the tree surface problem (1.1)-(1.5) as one on the

equilibrium domain a as follows:

(2.4) qt v3  0 on Sir,

(2.5) V. to AV + Vq - F(q,v,vq)1

(2.6) YVin - f in 2

(2.7) V- 0 on SB

(2.8) v~ + V3  F (q,v), i - 1,2
3 1 on S ,.

(2.9) q -2v. v3  (g - 16)q -1(q,v)'

Here we have gathered the linear term on the left hand side and

all the nonlinear terms on the right hand side of the equation.

-6-



Next we reduce the tangential component of the stress tensor

Fi , i - 1,2 to zero: Given F1 Hr 3 / 2 (S), i - 1,2, choose t
r+1the vector z a H (a) satisfying the condition

z - 0, a z - 0, 2 z (F2-Vito) On SF  -' y 2-2'-

z0 z 0 a y z - 0)on S..

Then w - v x z satisfies -

w3  0, W ,x 3 + w3 ,x  = 1  1 = 1,2 on SF,

v • W 0n ,

w 0 on S

3 F*

Therefore q, v' v - w, q satisfy the system (2.4)-(2.9) with

the replacements 7 by F4 - F - w + viw and Fi, i 1,2 by

0. The prime in v, is omitted hereafter.

Finally we rewrite the system (2.4)-(2.9) with F - F4 ,

t  0, i 1,2, for q,v,q in the operator form. Let P be

the projection on the subspace of solenoidal vectors orthogonal

0 1 0to the subspace Or - (l: r 4 H (), P - 0 on SF } of H (),

i.e•., "-

0 0 0(2.10) H = PH 0 Or

Applying P to (2.5) we have

(2.11) vt -PAv + Pvq = PF4 .

Here Pvq can be decomposed to three parts as follows:

-7-""
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where x'', 1 1,2,3, are defined by

it(1 -2uvv (2) -gq-Piq. 3 ~F on

(2.12) A-ol in A

aw -o) on SB
yB

We define

(2.13) {R v v1

R ((g -p))-y 2

Using these notations the system (2.4), (2.11) has the form

(2.14) qt -R v

(2.15) v+ Av + R ((g -PA)q) f t

where t(q,v,vq) -P1 - vs) We regard (2.6), (2.7), (2.8)4

with F 0 as domain conditions on A.

-8-



3. Rates of Decay for the Linear Problem

We investigate the decay rate of the solution of the

inearized equations

3.1) qt Ru,

32) u+ Au + R ((g -pd)1) =0

3.3) q(O) =O U(O) -U 0  at t =0.

rhese are supplied with the conditions:

(3.4) V u 0 In a

(3.5) U + u ~0, i11,2 onS

(3.6) U =0 on S B.

Theorem 3.1. Let E 2 =tO Iq 01/ + ,u010. Then the soiu-
L

tion of (3.1)-(3.6) nas the decay rat. (t k 1):

le q(t) 10 S C E2 t-la/ 0 S S 5 52.

(3.7)

lu~t)1 CO E2 t.

The theorem Is proved In several steps.

1 0Let N-(v- (q,u): q a H (Se) us PH (f),where

-pq g(,Q + P(up,vq)0  is the Inner product of H(

-9-
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and set =(v: Q H/2(SY), u PH2 (a) and u satisfies

(3.4), (3.5), (3.6)). Let us define the operator

(3.9) a v -on D(G) R
-Re Agp) -

and consider its closed extension which will be denoted by G

again.

Le ma 3.2. rhe operator G generates a contraction semigroup

etG on , and W c D(G).

Consider the resolvent equation:

(3.10) 1) -(h1 =•f

The resolvent of G can be extended in to the left half-plane,

as shown in lemmas 3.3-3.5.

Lemma 3.3. For any r0 > 0 there exists c0 > 0 such that If

A •(A a 0 + IT, -cI lTI < a < To, Irl > -O),

then the solution of (3.10) has the estimate

" -10-"
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311) lu12 + + R-1 5/2 + Iq15 1 2 + IA1113/2
Sc(Ifo + Ih 5/12 ) .

We treat the resolvent near A - 0 in two cases separately: (1)

the supports of h(t), f(t,y) belong to (Itl 2: tO} (11) the

supports belong to (ItI S to). Here a means the Fourier

transform with respect to x.

Lea 3.4. For any 0 > 0 there exists r0 > 0 such that if

A 1 (JAI < ro } and the supports of h(t), f(ty) belong to

(Itl k to), then the resolvent equation (3.10) has the solution

(q,u) satisfying

(3.12) lul2 ,1 911 5 1 2 S C1 51/2 + Iflo)

Let (t) be the Fourier transform of G with respect to x.

Lemma 3.5. there exist t1 > 0 nd rl,r 2 , with (w/2b) > r2  L

• r 1 •O, such that If r1 < I 1 < r2 , then (A - G(t)) exists
1 2

for Itl < t 1 . For small t there is a one-diaensional elgen-

space which Is analytic with respect to t. The eigenvaluo and

eigenvector have the following expansions.

"ao7
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S...

- A - -(gb 3 /3J) I 2 + 0(11 4' I ) "

:1 - 1 1 0(1(12)'

(3.13) U - lg 2) 2_ 2 )+Ot 3 - #2
,. 3.3 u I i"t /2ully2-b2) + 0(111 ). 1,2, -

2 3 2 3 4u3 - (gil /2)(y /3-b y-2b /3) + O(J11 .'

By using lemmas 3.2-3.5 the decay estimate (3.7) can be proved by

the transformation of the integral path of the representation

(3.14) v(t) - to - .-li fo_1, eAt (A-G 1v 0 dA, a > 0
?-.* 0-iT

to the left half-plane. .

14. Nonlinear Decay Estimates.

The free surface problem (1.1)-(1.5) was reduced to the

following system in 12. ,.-.

4.1) - R u 0,

(4.2) u t + A u + R ((g - pi)q) - f

.*. (4.3) 9(o) - 'to u(O) -u 0 , .'

- where f consists of nonlinear terms depending on q, u, vp and

their derivatives.

% -12- I
I ...
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Trhe initial value problem (4.1)-(4.3) has a unique solution

(Theorem 1.1) which becomes smooth for t k T > 0. Namely we0

know that if 3a < all, then

0L

q(t) 41 C(0.c.;N5 ) I.e., Q(t) .6* 04;
2

uMt 4 C(O,'.;H ),and

(4.5) i7 K((,e,) x a), u(t) -a K ((1,.w) x 9).

Let us define

Nlq.u;t) max( max sup (1+8) (1..@) - ..

a-0,1,2 0~s~t

(4.6) sup (1+8) ;(6)1 0' sup (1+gs)lu(s)j 2)
Os~t Osest

IEq,u) - Iqi- 7j,,a + tut
K7((1,~xiR)K 6((1,a)xR)

Since the linearized equation is solved by the semigroup e to on

Sin 13, this solution satisfies the variation of constants

formula:

(4.7) vMt et v0 + 0 (-) f(s)ds,

0

where v (9-n(u and f -p
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The first term of (4.7) was already estimated in 03, i.•.,

(4.8) 90 M et^O has the decay rate:

10'7olt)10 S CO1 2 t 0 S a S 5/2, i.e.,

ID q0(t)I 0 S CO 12 t - 1 1 h 1 / a , a - 0,1,2, and

(4.9) (tD 3aqo(t)1o S CO 12 t - 3 /,

1u0(t)12  s CO 32 t 1

It is sufficient by (4.4) to prove the decay rate for t k 2.

Let us decompose the second term of (4.7) Into three parts

(4.10) fte G[Oj)dS J- + ) t- )do + f )d0O(S 0 t/2 t-1 "';

11 + (](t) + It)I •

Lea 4.1. Let Z3 = lql$ + lui 2 + IDpl O . We have the eStI-

3 111 +I 1u12 +

I4.o s C(13 )((D;1 2 + ul 2 )(D12 + 1u12 + IDPlO )

2

11 IlD uj0 + IDPl 0)).

(4-11) IDO 0 S C(Z 3)((I I2 + lu12 )(11713 + 1ul 3 + IDPlI)

+ (lql L + I 1 L + ID q1j)(ID ul 0 + ID p10 )).

j, N.-.
- 14- - "

,' ., -, ','p * ._* .'% *. ,- . . , . .,t , . . ' . .' .. .. ' . , " ,, * '. . '. " ., ' ,' . , *," ,"**•*- 
• - .*. - -
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Lot 1 - 1,2,3 on 4 be the extension of Pi on S. by

using q for 9. We have

;V a 1,2,3, have the same estimate as e-17 as above.

Therefore f has the ese estimate as (4.11). F

Lemma 4.2. For t k 2, we have for 1,2

(4.13) K(q1l,ul;t) 9 C1  SUP (I + 8)3/ If(G)1009"t

SC IC(S 3 )m(g,u;t)2

,C .%,.%.

Also we havefor 1 3 ha3. i

N(q. u;t) S C sup (1 + )3/24

,a a.

A C C(z )N(q~u;t)(N(q,u;t) + E(q,u)).
2, 3

This Is proved by Theorem 3.1 and by Lmma 4.1 and Sobolev- -.:- -*

Tirenberg Inequality [43. In particular, we know that since by

(4.6) q(t) and u(t) are bounded in 36 and 95 repetvely..

for any t 1 1, we have by (4.6) for any t k 1

4.

" . %%
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2+a (a/3-1)
ID u(t)IO S Ct a a 1,2.

Proof of Theorm 1.2. It follows from (4.9) and Lemma 4.2 that

N(q,u;t) A C0! + C1C qut)
2

+ C CN(q,u;t)(N(17,u;t) + 3(q,u)).

Therefore there exists 8 2 > 0 such that if Z 2 8 a2' 30(8 1'
then

M(q~u;t) S CE

This prove* Theorem 1.2.

Remark. If the fluid has an infinite depth, the elgenvalue of

G(C) has the following expansion:

(4.15) AMt -griAt, - 2&MItl 2 0l 111/4

which is quite different from (3.13). The details will be

published elsewhere.
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